Introduction

Graduate Student → Professor → Chief Software Architect

Sense - Analyze - Act

I build open source software and technology to support reliable high-frequency data collection from mobile and wearable sensors to enable sensor-triggered just-in-time adaptive interventions. This is coupled with an analytics cloud designed to facilitate mobile health data analytics and interventions that enables population-scale model development, training, and evaluation. It brings state-of-the-art research techniques and methodologies together in a single system to affect clinical outcomes.

About

What we spend our time on is probably the most important decision we make.

Ray Kurzweil

MD2K

I am the Chief Software Architect for the NIH sponsored Mobile Sensor to Knowledge (MD2K) center where I design and build high-performance software to process real-time mobile sensor data for medical applications.

CS@Memphis

I was an assistant professor of Computer Science at the University of Memphis where my research focused on mobile health (mHealth) applications, particulary wearable technology to address obesity and mobile medication adherence for asthma.

Photography

I am an amateur photographer who enjoys taking photos of my family, ballroom dancing, and random things.

Ballroom Dancing

I have participated in social and competitive ballroom dancing since 2002.

Education

I received my Ph.D in Computer Science from the University of Virginia. I also hold a B.S. and M.Eng in Computer Engineering and Computer Science from the University of Louisville

Projects

mCerebrum

mCerebrum is a configurable software platform for mobile and wearable sensors. It provides support for reliable data collection from mobile and wearable sensors, and real-time processing of these data for sensor triggered just-in-time adaptive interventions.

Cerebral Cortex

Cerebral Cortex is the big data companion of mCerebrum designed to support population-scale data analysis, visualization, model development, and intervention design for mobile sensor data. It provides the ability to do machine learning model development on population scale data sets and provides interoperable interfaces for aggregation of diverse data sources.

Smart Home

Many smart home applications would like to know the room location of occupants, but tracking people in a convenient and practical way is notoriously difficult. We developed several new techniques for room location tracking by scanning a person's identity at the instant they cross the doorway threshold. One solution called the Doorjamb tracking system requires 1 sensor per doorway and can track the room location of multiple occupants with over 90% accuracy without requiring any RF transmitters or wearable tags, and without the use of privacy-invasive sensors such as cameras or microphones.